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We consider the question of the existence of stationary solutions for the Navier Stokes
equations describing the flow of a incompressible fluid past a semi-infinite flat plate at
zero incidence angle. By using ideas from the theory of dynamical systems we analyze
the vorticity equation for this problem and show that a symmetry-breaking term fits
naturally into the downstream asymptotic expansion of a solution. Finally, in order
to check that our asymptotic expressions can be completed to a symmetry-breaking
solution of the Navier–Stokes equations we solve the problem numerically by using
our asymptotic results to prescribe artificial boundary conditions for a sequence of
truncated domains. The results of these numerical computations a clearly compatible
with the existence of such a solution.
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1. INTRODUCTION

The study of the stationary Navier-Stokes flow of an incompressible fluid past
a semi-infinite flat plate that is aligned with the flow at infinity has a long
history. (3,10,20,21,25) The so called Blasius solution, (3) is discussed in many text-
books on fluid dynamics (see for example Refs. 2, 6, 14, 18). Given its practical im-
portance, it is astonishing how little is known about this problem on a mathematical
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level. Indeed, there still exists no proof that the Navier-Stokes equations admit a
stationary solution in the corresponding domain. Therefore, in order to gain some
insight into the structure of such a solution, various authors have constructed
higher order terms of a downstream asymptotic expansion which has as its leading
order term (order zero) the solution of the Blasius equation. A first very nice
paper on this subject was written by Alden. (1) It was however rapidly pointed
out by other authors (21) that the second order term found by Alden could not be
correct, since it predicted a vorticity that was not decaying exponentially fast trans-
verse to the flow, in contradiction with experimental observation. This problem
was then discussed by Goldstein (10) and later by Dyke. (25) In his very interesting
article (10) Goldstein showed the impossibility to cure the problem encountered
by Alden by a symmetric first order term and then introduced the now standard
second order logarithmic term. This theory has been recently reviewed in. Ref. 20
Some more historic details can be found in Secs. 4 and 5. For further motivations
and for related questions see (Refs. 16, 17 and 19).

Another important technical difficulty that one faces when computing asymp-
totic expansions for this and related problems are the boundary conditions at
infinity. To some extent this problem can be avoided by introducing parabolic
coordinates and solved by using matched asymptotic expansions or the technique
of strained coordinates (see Ref. 25). Here we use ideas from the theory of dy-
namical systems to compute an asymptotic expansion that satisfies term by term
divergence freeness and all the boundary conditions. Similar expansions for the
case of laminar flows around an obstacle of finite size have recently been discussed
in Refs. 4,5,12. See also. Ref. 23. There, such well-behaved expansions were used
for prescribing artificial boundary conditions when solving the corresponding
problem numerically by truncating the infinite domain to a finite computational
domain. Here, we will use similar techniques in order to verify numerically that
our asymptotic expressions can be completed to a solution of the Navier–Stokes
equations.

As mentioned above, Goldstein introduced his symmetric second order log-
arithmic correction term in order to resolve the problem with the slowly decaying
vorticity term found by Alden. For the symmetry-breaking solution discussed here
an asymmetric first order term plays this role so that no second order logarithmic
term is needed.

To summarize, the goal of this paper is two-fold: First, we provide solid evi-
dence that a solution with broken symmetry should exist. Second, by formulating
our result as a detailed conjecture we provide an explicit framework for further
research.

Consider a semi-infinite flat plate that is put into a uniform stream of a
homogeneous incompressible fluid filling up all of R2, aligned such that the fluid
flows at infinity parallel to the plate. The same problem can be posed in R3,
but reduces to the problem in R2 if we restrict ourselves to solutions that are
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independent of the third coordinate. The situation under consideration is therefore
in both cases modeled by the stationary Navier–Stokes equations

−ρ (ũ · ∇) ũ + µ�ũ − ∇ p̃ = 0, (1)

∇ · ũ = 0, (2)

in � = R2 \ B, with B = [0,∞), subject to the boundary conditions

ũ|B = 0, (3)

lim
r→∞

ϕ∈(0,2π)
x∈R

ũ((x, 0) + re(ϕ)) = ũ∞. (4)

Here, ũ is the velocity field, p̃ is the pressure, ũ∞ = u∞e1 with e1 = (1, 0) and
u∞ > 0, and e(ϕ) = (cos(ϕ), sin(ϕ)). The notation in the limit in (4) means that r
goes to plus infinity for arbitrary but fixed ϕ ∈ (0, 2π ) and x ∈ R. The density ρ

and the viscosity µ are arbitrary positive constants. Note that the boundary condi-
tion (4) can not be replaced by the limit where the argument of u goes to infinity
in an arbitrary way since, because of (3), one expects that limx→∞ ũ(x, y) = 0
for fixed y ∈ R. In directions transversal to the flow the vector field ũ has how-
ever to converge to ũ∞, and the formulation in (4) in particular ensures that
limy→±∞ u(x, y) = ũ∞ for arbitrary fixed x ∈ R.

Finally we note that for a proper treatment of the problem one also has to
discuss the behavior of the solution near x = y = 0 which is a singularity of the
boundary B. The symmetry-breaking solution that we discuss here is not more
singular than the symmetric solution discussed in the literature, and it follows
from our discussion of the stress tensor in Sec. 6 and the numerical solution in
Sec. 7 that the symmetry-breaking solution does not show any back-flow along the
plate. Its existence is rather due to the fact that, as in the case of the flow around an
finite obstacle (see for example Refs. 27, 28), the boundary conditions at infinity
do not fix the mass flow. In the symmetric case the zero streamline (the streamline
which separates the mass that passes above the plate from the mass that passes
below the plate) is the line x ≤ 0, y = 0, whereas for our asymmetric solution the
zero streamline starts at x = y = 0, but behaves for x → −∞ asymptotically like
y ≈ √−x . See Fig. 1 for the streamlines and Fig. 2 for some velocity profiles of
this solution.

From µ, ρ and u∞ we can form the length �,

� = µ

ρu∞
, (5)

the so called viscous length of the problem. Usually, for an exterior problem with a
domain of diameter A, we can compute the Reynolds number Re = A/�. The ge-
ometry of the present problem is however invariant under rescaling (i.e., Re = ∞)
so that we can assume without restriction of generality that µ = ρ = 1. Namely,
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Fig. 1. Streamlines of the symmetric solution (top left), and zoom on the region near the tip of the
plate (top right). Streamlines of the symmetry-breaking solution (bottom left), and zoom on the region
near the tip of the plate (bottom right).

if we define dimensionless coordinates x = x̃/�, and introduce a dimensionless
vector field u and a dimensionless pressure p through the definitions

ũ(x̃) = u∞u(x) , (6)

p̃(x̃) = (
ρu2

∞
)

p(x) , (7)

then in the new coordinates we get instead of (1)–(4) the equations

−(u · ∇)u + �u − ∇ p = 0, (8)

∇ · u = 0, (9)

in the same domain � = R2 \ B, subject to the boundary conditions

u|B = 0, (10)

lim
r→∞

ϕ∈(0,2π)
x∈R

u((x, 0) + re(ϕ)) = e1 . (11)

In (8)–(9) all derivatives are with respect to the new coordinates.
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Fig. 2. Left: horizontal velocity component as a function of y, at x = −1000 (dotted line), x = −100
(dashed line) and x = −1 (solid line). Right: horizontal velocity component as a function of y a x = 1
(solid line), x = 100 (dashed line) and x = 1000 (dotted line).

The following conjecture is our main result.
Conjecture 1.1. There exists a vector field u = (u, v) and a function p satisfying
the Navier–Stokes equations (8), (9) in � = R2 \ [0,∞), subject to the boundary
conditions (10), (11), with the following properties:

(i) there exists a sequence of divergence free vector fields uN = ∑N
n=0

(un, vn), N = 0, 1, 2, defined in �, such that

lim
x→∞ x N/2 sup

y∈R

∣∣
∣∣∣
u(x, y) −

N∑

n=0

un(x, y)

∣∣
∣∣∣
= 0, (12)

lim
x→∞ x (N+1)/2 sup

y∈R

∣∣
∣∣∣
v(x, y) −

N∑

n=0

vn(x, y)

∣∣
∣∣∣
= 0, (13)

and

lim
r→∞

ϕ∈(0,2π)
x∈R

r [N/2]+1/2 (u − uN ) ((x, 0) + re(ϕ)) = 0 . (14)

Here, [ ] means integer part (i.e., [N/2] = N/2 for N even and (N − 1)/2
for N odd), and e(ϕ) = (cos(ϕ), sin(ϕ)), and the notation in the limit in
(14) means that r goes to plus infinity for arbitrary but fixed ϕ ∈ (0, 2π )
and x ∈ R.

(ii) the functions ωn, ωn(x, y) = −∂yun(x, y) + ∂xvn(x, y) are rapidly decay-
ing functions of y for fixed x, in the sense that limy→±∞ eC |y|ωn(x, y) = 0
for all C > 0, x ∈ R, and n = 0, 1, 2.

(iii) the vector fields (u0, v0) and (u2, v2) are mirror symmetric with respect to
the x-axis, but (u1, v1), and therefore u, are not.
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Below we give explicit expressions for the vector fields uN . The rest of the
paper is organized as follows. In Sec. 2 we reformulate the problem in terms of
the vorticity equation and give an outline of our method. In Sec. 3 we recall the
Blasius’ scaling ansatz. In Sec. 4 we compute higher order terms for the case of
a solution with broken symmetry. These computations involve limits of certain
functions. All these limits, as well as all solutions of ordinary differential equations
involved, have been calculated using the computer algebra system Maple (Maple V,
Release 4, and Maple 9.51). For comparison with the literature we recall in Sec. 5
the symmetric expansion with Goldstein’s logarithmic corrections. In Sec. 6 we
discuss the stress tensor and give an expansion for the drag. Section 7 contains the
numerical results. The corresponding computer programs are written in ADA 95
and were executed on various PC’s. In Appendix A we give details concerning the
Blasius equation, the computation of the drag, and discuss the Green’s function of
the Laplacean for our domain. Appendix B contains all the computational details
related to the asymptotic expansion.

2. THE VORTICITY EQUATION

Let u = (u, v), and let

ω(x, y) = −∂yu(x, y) + ∂xv(x, y) . (15)

The function ω is the vorticity of the fluid. To solve (8) and (9) we can first solve
(9) together with the equation that we get by taking the curl of (8),

W (u, v, ω) ≡ −(u · ∇)ω + �ω = 0. (16)

Once (9), (15) and (16) are solved for u and ω, the pressure p can be constructed
by solving the equation that we get by taking the divergence of (8) subject to the
appropriate boundary conditions.

As we will see below, Conjecture 1.1 follows from a detailed analysis of the
vorticity Eq. (16). So assume a solution (u, ω) to the above problem exists. Then,
in analogy with recent results,(8,9,12,26−29) we expect the existence of functions
ωn: � → R and a nonnegative integer Nmax > 0 (possibly infinity), such that

lim
x→∞ x (1+N )/2 sup

y∈R

∣
∣∣∣∣
ω(x, y) −

N∑

n=0

ωn(x, y)

∣
∣∣∣∣

= 0 , (17)

for 0 ≤ N ≤ Nmax. More precisely, let 0 < ε < 1/4, 0 < δ 	 1, and let W be the
Banach space of continuous functions from � to R for which the norm ‖ ‖W ,

‖ω̃‖W = sup
(x,y)∈�

∣∣ω̃(x, y |x |1/2)
∣∣ eδ|y| |x |3/2+ε (1 + e−δx ) , (18)
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is finite (see after (34) and the end of Sec. 7 for a motivation of this norm). Then
we expect that

ω =
2∑

n=0

ωn + ω̃, (19)

and for the symmetry-breaking case of Conjecture 1 the functions ωn are conjec-
tured to be of the form

ωn(x, y) = θ (x)x−(n+1)/2ϕ′′
n

(
y√
x

)
, (20)

with ϕn certain smooth functions with derivatives ϕ′
n , ϕ′′

n decaying at infinity faster
than exponential, with ϕ0 and ϕ2 odd and with ϕ1 even (symmetry-breaking), with
θ the Heaviside function (i.e., θ (x) = 1 for x > 1 and θ (x) = 0 for x ≤ 0), and
with ω̃ ∈ W . From the representation (19) the decomposition of the vector field u
in Conjecture 1 is obtained by solving Eqs. (9) and (15).

In this paper we stay on a formal level and explain the construction of the
functions ϕn by asymptotic expansion techniques, using Eq. (16) as a starting
point. The main problem with (16) is that it involves in addition to the vorticity
ω also the velocity u. For this reason, the standard approach for constructing an
asymptotic expansions is to use an ansatz for the stream function ψ from which
one then computes expansions for u and v and ω via

u(x, y) = ∂yψ(x, y), v(x, y) = −∂xψ(x, y) , (21)

and

ω(x, y) = −�ψ(x, y), (22)

and these expansions are then plugged into (16) and solved order by order. The
stream function has however a more complicated structure than the vorticity, and ψ

is therefore usually expanded in parabolic coordinates using matched techniques
(see Refs. 20, 25). Here, we choose to proceed somewhat differently. Namely, we
use that as a consequence of the slow decay of the vorticity ω in the x-direction,
an asymptotic expansion of the stream function that is valid in all directions away
from the body can be obtained from the downstream asymptotic expansion (19)
of the vorticity without further assumptions.

So let ω be given. Then, the stream function ψ has to satisfy (22) in �, subject
to the boundary conditions

ψ |B = 0, (23)

∂nψ |B = 0, (24)

lim
r→∞

ϕ∈(0,2π)
x0∈R

(∂yψ,−∂xψ)((x0, 0) + re(ϕ)) = (1, 0) . (25)
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Equations (23) and (24) are equivalent to (10), and (25) is equivalent to (11). Note
that the system of Eqs. (22)–(25) is a priori over-determined, since for a problem
of the form (22) only (23) (Dirichlet problem) or (24) (Neumann problem) can
be imposed.4 The assumption that the Navier-Stokes problem (8)–(11) has a
solution therefore implies that the vorticity ω has to be such that (23) and (24)
are equivalent, i.e., lead to the same solution ψ . We construct in what follows an
asymptotic expansion which is compatible with this requirement.

Definition 2.1. A function ω: � → R is called admissible, if there exists a unique
solution ψ of Eq. (22) subject to the boundary conditions (23) and (25) which
satisfies (24).

The functions
∑N

n=0 ωn constructed below for N = 0, 1, 2 will be shown to
be admissible.

In practice we simply first solve (22) by using the Dirichlet boundary condi-
tion (23) and verify then in a second step (24). So let ω be given, and define for
(x, y) ∈ � the functions r and r− by the equations

r (x, y) =
√

x2 + y2, r−(x, y) =
√

2r (x, y) − 2x . (26)

Then, the general solution of (22) satisfying the boundary conditions (23) and (25)
is (see Appendix A for details),

ψ(x, y) = y + αr−(x, y) + ψω(x, y), (27)

with α ∈ R arbitrary, and with ψω = LG(ω), where

LG(ω)(x, y) = −
∫

�

G(x, y; x0, y0) ω(x0, y0) dx0dy0, (28)

with G the Green’s function of the Laplacean in � with Dirichlet boundary
conditions on [0,∞) and at infinity. Namely,

G(x, y; x0, y0) = G̃(y/r−(x, y), r−(x, y)/2; y0/r−(x0, y0), r−(x0, y0)/2),
(29)

where

G̃(ξ, η; ξ0, η0) = 1

4π
log((ξ − ξ0)2 + (η − η0)2)

− 1

4π
log((ξ − ξ0)2 + (η + η0)2) . (30)

4 For the (singular) domain � at hand the solution of the Dirichlet or Neumann problem is determined
by the above boundary conditions only up to a multiple of a certain harmonic function, since the
boundary condition (25) at infinity is not sufficient to ensure uniqueness.
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Note that G̃ is nothing else than the Green’s function of the Laplacean in the upper
half plane H = {z ∈ C | Im(z) > 0} with Dirichlet boundary conditions on the
real axis, and the arguments in the definition (29) are obtained from the inverse
of the conformal mapping H → �, z �→ z2. Here we have interpreted � as a
subset of the complex plane. Let ψ0,∞(x, y) = y, ψ1,∞(x, y) = αr−(x, y) and
ψn,∞ = 0 for n ≥ 2. For the function ψ we will then use below for 0 ≤ N ≤ 2 the
decomposition

ψ =
N∑

n=0

ψn + RN , (31)

where,

ψn = ψn,∞ + LG(ωn), (32)

RN =
∞∑

n=N

ψn,∞ + LG

(
ω −

N∑

n=0

ωn

)
, (33)

and we will show that there are functions ωn such that

lim
x,y→∞ r3/2∂x R2(x, y) = lim

x,y→∞ r3/2∂y R2(x, y) = 0, (34)

provided the solution ω is indeed as conjectured in (19) with ω̃ ∈ W .
Basically, the idea is now to use the functions

∑N
n=0 ψn as an approximation

to ψ in order to compute approximations for u = (u, v) using (21). These approx-
imations are then plugged together with the approximation

∑N
n=0 ωn for ω into

(16) in order to obtain recursively equations for the functions ωn . This way, by
construction, all vector fields are smooth in � and satisfy the boundary conditions
(23) and (25) and a posteriori also (24), since the functions

∑N
n=0 ωn turn out

to be admissible in the sense of Definition in 2.1. This solves the above men-
tioned problem with the boundary conditions at infinity at the price of introducing
non-local expressions for ψn due to the integration in the definition (32). Such
non-local expressions are not manipulated easily when trying to solve the resulting
equations for ωn , and for 0 ≤ N ≤ 2 we have therefore analyzed the functions ψn

in detail. It turns out that, modulo terms obeying the same bounds as R2 in (34),
local approximations ψn,loc for ψn can be constructed, such that if we use these
approximations instead of ψn to compute the approximations uN = ∑N

n=0(un, vn)
for u, the vector fields uN nevertheless satisfy all the boundary conditions. On
a heuristic level the reason why such local approximations exist is that, because
of the slow decay of the vorticities ωn for x → ∞ and their rapid decay in all
other directions, the dominant asymptotic contribution of the solution ψn of
Eq. (22), i.e., of �ψn = −ωn , is given for y �= 0 and x → ∞ by the double
integral − ∫ ∞

y dy′ ∫ ∞
y′ dy′′ ωn(x, y′′) .
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3. BLASIUS EQUATION AND BEYOND

In order to motivate the mathematical analysis in subsequent sections we re-
call here briefly the Blasius’ theory. (3,15) This also allows us to give the reader a first
glimpse at our method. Let x, y > 0 and set ψ(x, y) = ψB(x, y) ≡ √

x f (y/
√

x),
with f the solution of the Blasius equation, defined for z ≥ 0 by,

f ′′′(z) + 1

2
f (z) f ′′(z) = 0, f (0) = f ′(0) = 0, lim

z→∞ f ′(z) = 1 . (35)

See Eq. (41) below and Appendix A for details concerning the equation. We have
that

f ′′(0) = a2 = 0.332057 . . . , (36)

lim
z→∞( f (z) − z) = a = −1.72078 . . . , (37)

and the function z �→ f (z) − z − a and all its derivatives decay at infinity faster
than exponential. See Fig. 3 for a graph of f ′, f ′′ and z �→ f (z) − z − a. The idea
behind the above ansatz for the stream function is the experimental observation
that a boundary layer of width

√
x forms along the plate (see for example Ref. 18),

and ψB is supposed to describe the flow in this boundary layer to leading order of
an expansion for large x and fixed ratio y/

√
x > 0. From ψB we find with (21)

uB(x, y) = ∂yψB(x, y) = f ′
(

y√
x

)
, (38)

vB(x, y) = −∂xψB(x, y) = −1

2

1√
x

(
f

(
y√
x

)
− y√

x
f ′

(
y√
x

))
, (39)

0 500 1000
0

0.02
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0 500 1000
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0.35

0.38

Fig. 3. Comparison of the function τ (dashed line) of the symmetric solution with the average (τ+ +
τ−)/2 (solid line) obtained from the symmetry-breaking solution (left), and zoom on the same quantities
multiplied with

√
x (right).
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and from (22) we find, neglecting terms of order 1/x3/2,

ωB(x, y) = − 1√
x

f ′′
(

y√
x

)
. (40)

By construction the vector field (uB , vB) is divergence free. We now substitute
(38)–(40) into (16) and compute the limit as x → ∞, keeping z = y/

√
x > 0

fixed. We find (using a computer algebra system) that

lim
x→∞ x3/2W (uB, vB, ωB)(x, z

√
x) = −

(
1

2
f f ′′ + f ′′′

)′
(z), (41)

and the right hand side in (41) equals zero since f solves the Blasius equation (35).
Therefore, in the sense of the limit in (41), (38)–(40) provide a solution of Eq. (16)
to leading order. Note that the boundary conditions on f in (35) imply that
uB(x, 0) = vB(x, 0) = 0 and that limy→∞ uB(x, y) = 1 for x ≥ 0. Therefore the
boundary condition (10) is satisfied, but because of (37) we find that for x > 0

lim
y→∞(uB, vB)(x, y) =

(
1,− a

2
√

x

)
�= (1, 0), (42)

i.e., the vector field (uB, vB) does not satisfy the boundary condition (11). This is
not astonishing since the Blasius’ theory is a priori designed to describe the flow
within the boundary layer only, but the problem can in fact be avoided by using
parabolic coordinates or matched expansion techniques (see Refs. 10,20,25).The
following proposition shows that within our framework the Blasius’ ansatz also
naturally leads to a vector field satisfying all the boundary conditions:

Proposition 3.1. Let f be the solution of the Blasius equation (35) and define
the function ω0: � → R by the equation

ω0(x, y) = −sign(y)
θ (x)√

x
f ′′

( |y|√
x

)
, (43)

with θ the Heaviside function (i.e., θ (x) = 1 for x > 0 and θ (x) = 0 for x ≤ 0).
Then ω0 is admissible in the sense of Definition 2.1.

A proof of this proposition is given in Appendix B.
From Proposition 3.1 it follows that there is a unique solution ψ0 of

�ψ0 = −ω0 in �, such that the vector field (∂yψ0,−∂xψ0) satisfies the bound-
ary conditions (10), (11). In Appendix B we moreover extract from ψ0 a local
approximation ψ0,loc,

ψ0,loc(x, y) = y + a
y

√
2
√

x2 + y2 − 2x

+ θ (x) sign (y)
√

x

(
f

( |y|√
x

)
− |y|√

x
− a

)
. (44)



144 Bichsel and Wittwer

Note that since limy→0 y/r−(x, y) = √
x sign(y) for x > 0, we find that that

ψ0,loc(x, 0) = 0 for x > 0. From (44) one finds the vector field u0 = (u0, v0) =
(∂yψ0,loc,−∂xψ0,loc),

u0(x, y) = u0,E (x, y) + θ (x)

(
f ′

( |y|√
x

)
− 1

)
, (45)

v0(x, y) = v0,E (x, y) − θ (x)sign(y)
1

2
√

x

(
f

( |y|√
x

)
− |y|√

x
f ′

( |y|√
x

)
− a

)
,

(46)

with

u0,E (x, y) = 1 + a

4

r−(x, y)

r (x, y)
, v0,E (x, y) = −a

2

y

r−(x, y) r (x, y)
, (47)

and r and r− as defined in (26). It is easily checked that the vector field u0 is
smooth in �. Note that

u0(x, y) = u0,E (x, y) + θ (x)(uB(x, |y|) − 1),

v0(x, y) = v0,E (x, y) + θ (x)sign(y)

(
vB(x, |y|) + a

2
√

x

)
,

and therefore we see using (42) that the boundary conditions (10) and (11) are
satisfied. Moreover we find (see Appendix B) that

lim
x→∞ x3/2W (∂yψ0,−∂xψ0, ω0)(x, z

√
x) = lim

x→∞ x3/2W (u0, v0, ω0)(x, z
√

x),

(48)
and as in (41), that for z ∈ R

lim
x→∞ x3/2W (u0, v0, ω0)(x, z

√
x) = −sign(z)

(
1

2
f f ′′ + f ′′′

)′
(|z|), (49)

with the right hand side of (49) being equal to zero because f solves the Blasius
equation (35). This means that the theoretical prediction for the leading order
asymptotic shape of the flow in the boundary layer is not affected by the replace-
ment of (uB, vB, ωB) by (u0, v0, ω0). This is what we should expect, since the cor-
rectness of the Blasius velocity profile has been experimentally checked to good
precision. (18)

3.1. Pressure

In Sec. 8 we need an approximate expression for the pressure. Let u =
(u, v) = (∂yψ,−∂xψ). From (8) we find for p the equation

�p = 2(∂x u∂yv − ∂xv∂yu) = 2 J (ψ), (50)
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where J (ψ) is the Jacobian of ψ ,

J (ψ) = det

(
∂2

x ψ ∂x∂yψ

∂x∂yψ ∂2
yψ

)

.

Furthermore we get from (10), using (8) and (15) for x ≥ 0 the boundary condition

lim
y→±0

∂y p(x, y) = lim
y→±0

∂xω(x, y) . (51)

By hand, or using a computer algebra system, we find that

lim
x→∞ x2 J (ψ0,loc)(x, zx1/2) = ρ ′′

0 (|z|), (52)

where

ρ0(z) = −1

4
f (z)2 + 1

4
z f (z) f ′(z) + 1

2
z f ′′(z) + a

4
z + a2

4
.

Note that limz→∞ ρ0(z) = 0. From (51) and (43) we get that an approximation p0

to the pressure has to satisfy the boundary condition

lim
y→±0

∂y p0(x, y) = lim
y→±0

∂xω0(x, y) = a2

2

sign(y)

x3/2
. (53)

Since �ρ0(y/x1/2) ≈ ∂2
yρ0(y/x1/2) in the sense of limit (49), we conclude from

(52) that the function ρ0 determines the pressure to leading order, modulo a
harmonic function which has to be chosen such that the boundary condition (53)
is satisfied. We therefore get that p ≈ p0, where

p0(x, y) = θ (x)

x
ρ0

( |y|√
x

)
− a

4

√
2
√

x2 + y2 − 2x
√

x2 + y2
. (54)

4. THE SYMMETRY-BREAKING CASE

When analyzing Eq. (16) to leading order in the sense of limit (49) we
found the Blasius equation, which is a nonlinear third order zordinary differential
equation. Similarly, when discussing the higher order term of order n ≥ 1, one
finds the equation

Lngn = jn, (55)

for certain functions jn depending on the solution up to order n − 1, and with Ln

the third order linear ordinary differential operator defined for n ≥ 1 and z ≥ 0 by
the equation

(Lng) (z) = g′′′(z) + 1

2
f (z)g′′(z) + n

2
f ′(z)g′(z) − 1

2
(n − 1) f ′′(z)g(z), (56)
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where f is the solution of the Blasius equation. Before discussing the exact form
of the functions jn and the corresponding solutions gn of (55) (this is the content
of the remaining parts of this section), we make some general remarks concerning
the structure of the Eqs. (55). Indeed, the operators Ln have been analyzed in some
detail by Alden, (1) and then by Goldstein. (10) It is easily verified that the multiples
of the function f ′ are in the kernel of Ln for all n ≥ 1. The kernel of L1 contains in
addition the constant functions and the kernel of L2 the multiples of the function
f2,0,

f2,0(z) = ( f (z) − z f ′(z))/a, (57)

with a as defined in (37). With this normalization limz→∞ f2,0(z) = 1. See Fig. 6
for a graph of f2,0.

Alden(1) studied higher order corrections by an ansatz for the stream function
which corresponds to keeping only terms with n even in (17). He found the
equation L2g2 = j2,0 for a certain function j2,0 given below. The problem with
this equation is that the function j2,0 is not in the image of L2 of a function with
derivatives of rapid decrease. This is related to the fact that the function f2,0 is in
the kernel of L2. The equation still has a solution though and this is the solution
that Alden constructed, but its derivatives decay only algebraically at infinity, and
as explained above this is in contradiction with experimental observations. For this
reason Goldstein made an ansatz which corresponds to also keeping terms with n
odd in (17) which, on the basis of more recent mathematical results, (26) is indeed
expected to be the correct ansatz for the problem.

4.1. The First Order Term

In Goldstein (10) discusses the question of the existence of a symmetric term
with n = 1 that could be used to adjust the right hand side of the second order
equation such as to obtain a solution with derivatives of rapid decrease. For n = 1
one finds the homogeneous equation L1g1 = 0. The only solution of this equation
satisfying the “natural” boundary conditions g1(0) = g′

1(0) = 0 is g1 ≡ 0, and
one therefore again finds for n = 2 the solution of Alden. Goldstein then also
discusses the boundary conditions g1(0) = 1, g′

1(0) = 0, for which the solution is
g1 ≡ 1. But this leads to a vector field violating the boundary conditions. Goldstein
therefore sets g1 ≡ 0 and introduces the logarithmic second order term instead,
which for comparison with the literature is discussed in Sec. 5.

However, if we use the boundary conditions g1(0) = 0, g′
1(0) = 1 for which

the solution of the homogeneous equation is g1 = f ′ and furthermore give up
the mirror-symmetry of the vector field with respect to the x-axis, then we can
construct a solution satisfying the boundary conditions. More precisely we have
the following proposition:
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Proposition 4.1. Let ω0 be as defined in (43). Let f1: R+ → R be the solution
of the equation

f ′′
1 (z) + 1

2
f (z) f ′

1(z) = 1

2
( f (z) − z − a), f1(0) = 0, f ′

1(0) = 1, (58)

and define ω1: � → R by the equation

ω1(x, y) = −b

2
θ (x)

1

x
f ′′
1

( |y|√
x

)
, (59)

for b ∈ R. Then, the function ω0 + ω1 is admissible in the sense of Definition 2.1.

A proof of this proposition is given in Appendix B.
Note that, in contrast to the order zero term (43), the function ω1 is even in y

(otherwise ω0 + ω1 would not be admissible), and the corresponding vector field
is therefore not mirror symmetric with respect to the x-axis. Taking the derivative
of Eq. (58) we get that (L1 f1)(z) = ( f ′(z) − 1)/2. The Eq. (58) can be solved
explicitly. One finds

f1(z) = 1

2

∫ z

0
dζ f ′′(ζ )

∫ ζ

0

f (η) − η − a

f ′′(η)
dη + f ′(z)/a2, (60)

with f the solution of the Blasius equation and a2 as in (36). See Fig. 7 for a graph
of f1. The derivatives of f1 decay faster than exponential at infinity. We take the
fact that Eq. (58) has a nontrivial solution with the desired properties as a first
indication in favor of the existence of a symmetry-breaking solution.

From Proposition 4.1 it follows that there is a unique solution ψ1 of �ψ1 =
−ω1 in �, such that the vector field u0 + (∂yψ1,−∂xψ1), with u0 as defined in
(45)–(47), satisfies the boundary conditions (10), (11). In Appendix B we also
extract from ψ1 a local approximation ψ1,loc,

ψ1,loc(x, y) = −b

2

√
2
√

x2 + y2 − 2x + b

2
c1 + b

2
θ (x)

(
f1

( |y|√
x

)
−c1

)
, (61)

where

c1 = lim
z→∞ f1(z) = 5.353 . . . .

We use the function ψ1,loc to define the vector field (u1, v1) = (∂yψ1,loc, −∂xψ1,loc),

u1(x, y) = u1,E (x, y) + θ (x)
b

2

sign(y)√
x

f ′
1

( |y|√
x

)
, (62)

v1(x, y) = v1,E (x, y) + θ (x)
b

4

1

x

|y|√
x

f ′
1

( |y|√
x

)
, (63)
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where

u1,E (x, y) = −b

2

y

r−(x, y) r (x, y)
, v1,E (x, y) = −b

4

r−(x, y)

r (x, y)
, (64)

with r and r− as defined in (26). It is easily checked that the vector field u1 =
u0 + (u1, v1) is smooth in � and satisfies the boundary conditions (10), (11).
Equation (58) is obtained from (16) in the limit (computed with a computer
algebra system)

lim
x→∞ x2W (∂yψ0 + ∂yψ1,−∂xψ0 − ∂xψ1, ω0 + ω1)(x, z

√
x)

= lim
x→∞ x2W (u0 + u1, v0 + v1, ω0 + ω1)(x, z

√
x)

= b

4
f ′′(|z|) − b

2

(
1

2
f f ′

1 + f ′′
1

)′′
(|z|), (65)

and the right hand side of (65) is equal to zero because f1 solves Eq. (58). The
constant b in (65) remains undetermined at this stage. It will be determined from
the computation to second order.

4.2. The Second Order Term

As mentioned above the source of all difficulties in the construction of an
asymptotic expansion is the equation L2g2 = j2, which is obtained when studying
(16) to second order. Without the contribution coming from a nonzero term of
order one (or logarithmic corrections, see Sec. 5), the right hand side in this
equation is not in the image of L2 of functions with derivatives of rapid decrease.
With our first order term we get to second order the equation (as in the proceeding
section we first write the equations for z ≥ 0 only; see (80) for the sign changes
necessary for z < 0)

(L2 f2)(z) = j2,0(z) + b2 j2,1(z), f2(0) = f ′
2(0) = f ′′

2 (0) = 0, (66)

with

j2,0(z) = a

16
z2 f ′′(z) − 1

8
z f (z) f ′(z) + 1

8
z2 f ′′(z) f (z)

−3

2
z f ′′(z) − 1

8
f ′(z)2z2 − a

8
f (z) + 1

4
f (z)2

−1

4
az f ′(z) − 1

8
a2, (67)

which is (modulo normalization) the function already obtained by Alden in, (1) and

j2,1(z) = 1

4
f ′
1(z)

(
1 − 1

2
f ′
1(z)

)
. (68)
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The (real) number b in (66) has to be chosen such that
∫ ∞

0
f (z)( j2,0(z) + b2 j2,1(z)) dz = 0 . (69)

The condition (69) ensures that the right hand side is the image of L2 of a function
with derivatives of rapid decrease at infinity. Namely (see Alden Ref. 1), using
that the function f is an integrating factor for L2, i.e.,

f L2(g) =
(

f g′′ +
(

1

2
f 2 − f ′

)
g′ + f ′′g

)′
, (70)

we see that (66) is equivalent to the equation
(

f f ′′
2 +

(
1

2
f 2 − f ′

)
f ′
2 + f ′′ f2

)
(z) =

∫ z

0
f (ξ )( j2,0(ξ ) + b2 j2,1(ξ )) dξ .

(71)
Equation (71) can again be solved explicitly in terms of quadratures (see Alden
Ref. 1), and by virtue of (69) the derivatives of the solution f2 are functions of
rapid decrease at infinity. Note that the functions j2,0 and j2,1 decay at infinity also
faster than exponential so that the integral in (69) is well defined. See Fig. 7 for
a graph of j2,0 and j2,1. A priori it is not clear that the signs in Eq. (69) are such
that the resulting equation can be solved for b ∈ R. We take the fact that this is
indeed the case as a further indication for the existence of a solution with broken
symmetry. Numerically we find that

b = ±1.2378 . . . , (72)

and we use from now on f2 to mean the solution of Eq. (66) obtained with this
value of b. See Fig. 7 for a graph of f2.

After these preparatory remarks we can now formulate the results concerning
the expansion to second order:

Proposition 4.2. Let f be the Blasius function and let f1 be as defined in (58).
Let

f̃2(z) = f2(z) + c2,0 f2,0(z), (73)

with f2 the solution of Eq. (66), with f2,0 as defined in (57) and with c2,0 an
arbitrary real constant. Let furthermore

f̃0(z) = 1

4
z2 f (z) − 3

4
z F1(z) + 3

4
F2(z) + az2

8
+ 3

4
λ1, (74)

with

F1(z) =
∫ z

0
f (ξ ) dξ, F2(z) =

∫ z

0
F1(ξ ) dξ,
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and λ1 = ∫ ∞
0 dξ

∫ ∞
ξ

( f (η) − η − a) dη. Let ω2 = ω̃0 + ω̃2, with ω̃i : � → R, i ∈
{0, 2} defined by the equation

ω̃i (x, y) = −sign(y)θ (x)
1

x3/2
f̃ ′′
i

( |y|√
x

)
. (75)

Then, the function
∑2

n=0 ωn is admissible in the sense of Definition 2.1.

A proof of this proposition is given in Appendix B.
From Proposition 4.2 it follows that there exists a function ψ2 that solves the

equation �ψ2 = −ω2 in �, such that the vector field u1 + (∂yψ2,−∂xψ2) satisfies
the boundary conditions (10) and (11). The reason for introducing ω2 as the sum of
two terms is that ψ0 − ψ0,loc is of the same order as ψ2. In fact (see Appendix B),
we have that �(ψ0 − ψ0,loc) = ω̃0, so that is is sufficient to compute a solution
ψ̃2 of the equation �ψ̃2 = −ω̃2. In Appendix B we extract from ψ̃2 a local
approximations ψ̃2,loc,

ψ̃2,loc(x, y) = c̃2
y

r (x, y) r−(x, y)
+ θ (x)sign(y)

1√
x

(
f̃2

( |y|√
x

)
− c̃2

)
, (76)

with r and r− as defined in (26), and with c̃2 = c2 + c2,0, where

c2 = lim
z→∞ f2(z) = −3.777 . . . . (77)

Note that limy→±0 ψ̃2,loc(x, y) = 0 for x > 0. We use ψ̃2,loc to define the vector
field (u2, v2) = (∂yψ̃2,loc,−∂x ψ̃2,loc),

u2(x, y) = u2,E (x, y) + θ (x)
1

x
f̃ ′
2

( |y|√
x

)
,

v2(x, y) = v2,E (x, y) + θ (x)
sign(y)

2x3/2

(
f̃2

( |y|√
x

)
+ |y|√

x
f̃ ′
2

( |y|√
x

)
− c̃2

)
,

(78)

where

u2,E (x, y) = − c̃2

4

r−
r2

(
1 + 2x

r

)
, v2,E (x, y) = − c̃2

2

y

r− r2

(
1 − 2x

r

)
. (79)

The vector field u2 = u1 + (u2, v2) is smooth in � and satisfies the boundary
conditions (10), (11). Finally, Eq. (66) is obtained from (16) by the limit (computed
with a computer algebra system),

lim
x→∞ x5/2W (u0 + u1 + u2, v0 + v1 + v2, ω0 + ω1 + ω2)(x, z

√
x)

= −sign(z)(L2 f̃2 − j2,0 − b2 j2,1)′(|z|), (80)
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and the right hand side of (80) is equal to zero because f2 solves Eq. (66) and f2,0

is in the kernel of L2.

5. THE SYMMETRIC CASE

For comparison with the literature we recall in this section some facts
about the symmetric expansion involving logarithmic corrections proposed by
Goldstein. (10) For this case we still expect (17) but the functions ωn are more com-
plicated than in (20). Namely, Goldstein proposed that there should be functions
ϕn,m , with derivatives decaying rapidly at infinity, such that

ωn(x, y) =
n∑

m=0

ρn,m(x)ϕ′′
n,m

(
y√
x

)

with

ρn,m(x) = θ (x)
log(x)n−m

x (n+1)/2
.

See Ref. 25 for a motivation concerning the logarithmic terms. To leading order
one finds as before the vector field (45)–(47) and (49), the first order term is
identically zero, and for the second order terms one makes the ansatz

ω2(x, y) = ω2,1(x, y) + ω2,2(x, y) (81)

with

ω2,1(x, y) = −bs sign(y)θ (x)
log(x)

x3/2
f ′′
2,0

( |y|√
x

)
, (82)

with f2,0 as defined in (57), and with ω2,2 = ω̃0 + ω̃2,2, with ω̃0 as defined in (75),
and where

ω̃2,2(x, y) = −sign(y)θ (x)
1

x3/2
g̃′′

2

( |y|√
x

)
, (83)

with g̃2 = g2 + c2,0 f2,0, with f2,0 as defined in (57) and c2,0 an arbitrary real
constant, and with g2 the solution of the equation

(L2g2)(z) = j2,0(z) + bs js,2,1(z), g2(0) = g′
2(0) = g′′

2 (0) = 0, (84)

with j2,0 as defined in (67) and with

js,2,1(z) = −1

a
f ′′(z) f (z), (85)

where bs has to be chosen such that
∫ ∞

0
f (z) ( j2,0(z) + bs js,2,1(z)) dz = 0 . (86)
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Numerically we find that

bs = 1.427 . . . , (87)

and we use from now on g2 to mean the solution of Eq. (84) obtained with this
value of bs .

Note that the function ω0 + ω2,1 is not admissible in the sense of
Definition 2.1. More precisely, there is no solution ψ2,1 to �ψ2,1 = −ω2,1 such that
the vector field u0 + (∂yψ2,1,−∂xψ2,1) satisfies both of the boundary conditions
(10) and (11). Here, in order to circumvent this problem for numerical purposes
and for comparison with the literature, we have added to the local approximation
obtained from ψ2,1 as defined by Dirichlet boundary conditions an ad hoc term of
higher order, in the spirit of our results in Ref. 4. This produces a modified local ap-
proximation ψ2,1,loc such that the vector field u2,1 = u0 + (∂yψ2,1,loc,−∂xψ2,1,loc)
satisfies both of the boundary conditions (10) and (11). Explicitly we have

ψ2,1,loc(x, y) = bs y
log(r )

r r−
+ bs

2

r−
r

(
arctan

( y

x

)
− πθ (x) sign (y)

)

+ bssign(y)θ (x)
log(x)

x1/2

(
f2,0

( |y|√
x

)
− 1

)

+ λ
bsπ

2a2
2

1

x
f ′

( |y|√
x

)
f ′′

( |y|√
x

)
, (88)

and the term proportional to λ is the just mentioned ad hoc term, cho-
sen such that for λ = 1, limy→±0 ∂yψ2,1,loc(x, y) = 0. With (u2,1, v2,1) =
(∂yψ2,1,loc,−∂xψ2,1,loc) we get (using a computer algebra system) that

lim
x→∞ x5/2/ log(x)W (u0 + u2,1, v0 + v2,1, ω0 + ω2,1)(x, z

√
x)

= −bs

2
sign(z) (L2 f2,0)′(|z|), (89)

with the right hand side being equal to zero because f2,0 is in the kernel of L2.
Finally, a local approximation to the solution ψ̃2,2 of the equation �ψ̃2,2 = −ω̃2,2

is ψ̃2,2,loc,

ψ̃2,2,loc(x, y) = c̃2,2
y

r r−
+ θ (x) sign (y)

1√
x

(
g̃2

( |y|√
x

)
− c̃2,2

)
, (90)

with r and r− as defined in (26), and with c̃2,2 = c2,2 + c2,0, where

c2,2 = lim
z→∞ g2(z) = −4.436 . . . . (91)

We use ψ̃2,2,loc to define the vector field (u2,2, v2,2) = (∂yψ̃2,2,loc,−∂x ψ̃2,2,loc). The
vector field u2,1 + (u2,2, v2,2) is smooth in � and satisfies the boundary conditions
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(10), (11). Finally, Eq. (84) is obtained from (16) by computing the limit

lim
x→∞ x5/2W (u0 + u2,1 + u2,2, v0 + v2,1 + v2,2, ω0 + ω1 + ω2)(x, z

√
x)

= −sign(z) (L2g̃2 − j2,0 − bs js,2,1)′(|z|), (92)

and the right hand side of (92) is equal to zero because g2 solves Eq. (66) and f2,0

is in the kernel of L2.

6. THE STRESS TENSOR

Using that u(x, 0) = v(x, 0) = 0 for x ≥ 0, the stress tensor � of our problem
evaluated on ∂� = [0,∞) is

�(x,±0) = lim
y→±0

(−p(x, y) ∂yu(x, y)

∂yu(x, y) −p(x, y)

)

. (93)

For x ≥ 0 we set

τ±(x) = ± lim
y→±0

∂yu(x, y) = ∓ lim
y→±0

ω(x, y) . (94)

From (93) we get for the average drag D̄ exerted on the interval [0, x] of the plate

D̄(x) = 1

x

∫ x

0
(τ+(s) + τ−(s)) ds.

For the symmetry-breaking case we get from the asymptotic expansion (43), (59),
(75), and using that f ′′

1 (0) = −a/2 (see (58)) and that f̃ ′′(0) = a/4 (see (74)),
that τ± = τa,±,

τa,±(x) = a2√
x

∓ ab

2

1

x
+ a

4

1

x3/2
+ c2,0

x3/2
+ · · · , (95)

with a2 as in (36) , with a as in (37), and b as in (72), and c2,0 an arbitrary real
constant. Similarly, the theory with the second order logarithmic term predicts that
τ± = τ , where

τ (x) = a2√
x

− bsa2

a

log(x)

x3/2
+ a

4

1

x3/2
+ c2,0

x3/2
+ · · · . (96)

In the asymmetric case we therefore have that

1

2
(τa,+ + τa,−)(x) = a2√

x
+ const.

x3/2
+ · · · . (97)

Note that the terms proportional to b which are not integrable at x = 0 and x = ∞
cancel out. In the asymmetric case we therefore get for the average drag D̄(x)
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acting on [0, x] that D̄(x) = D̄a(x), where

D̄a(x) = 2

x

∫ x

0

a2√
s

ds + 2

x

∫ ∞

0

(
1

2
(τa,+ + τa,−)(s) − a2√

s

)
ds

− 2

x

∫ ∞

x

(const.

s3/2
+ · · ·

)
ds

= 4a2√
x

+ C0

x
+ const.

x3/2
+ · · · . (98)

Here we have used the fact that we expect (τa,+ + τa,−)(s) to be integrable
at s = 0 (otherwise the tip of the plate produces an infinite amount of drag), to
absorb all our lack of knowledge on τa,± for small values of x into the constant C0.
Namely, if (τa,+ + τa,−)(s) is integrable at s = 0, then because of (97) the function
(τa,+ + τa,−)(s) − 2a2/

√
s is integrable at zero and infinity. Astonishingly enough,

the constant C0 can be determined from the asymptotic expansion to leading order
by using the integral form of the momentum equations. This fact has been first
pointed out by Imai. (13,25) One finds (see Appendix A),

C0 = a2π

4
= 2.3256 . . . , (99)

and therefore

D̄a(x) = 1.328 . . .√
x

+ 2.3256 . . .

x
+ const.

x3/2
+ · · · . (100)

Similarly, we find for the symmetric case that D̄(x) = D̄s(x), where

D̄s(x) = 2

x

∫ x

0

a2√
s

ds + 2

x

∫ ∞

0

(
τ (s) − a2√

s

)
ds

− 2

x

∫ ∞

x

(
− bs

a2

a

log(s)

s3/2
+ const.

s3/2
+ · · ·

)
ds

= 4a2√
x

+ C0

x
+ 2bsa2

a

2 log(x) + 4

x3/2
+ const.

x3/2
+ · · · , (101)

and therefore

Ds(x) = 1.328 . . .√
x

+ 2.3256 . . .

x
− 1.1018 . . .

log(x)

x3/2
+ const.

x3/2
. (102)

For comparison with the literature see Ref 25 Eq. (7.46) page 140. See Fig. 3
for a comparison of the function τ of the symmetric solution with the average
(τ+ + τ−)/2 of the symmetry-breaking solution.
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Fig. 4. Plot of the function x �→ x1/2τ (x) as a function of domain size L with artificial boundary
conditions computed from first order symmetric perturbation theory (top left) and zoom on the same
quantity (top right). Bottom: same results for artificial boundary conditions obtained from second order
logarithmic symmetric perturbation theory.

7. NUMERICAL SOLUTION

In order to check that the asymptotic expressions obtained in Sec. 4 can be
completed to a solution of the Navier-Stokes equations we solve the problem (8)–
(11) numerically by restricting the equations from the exterior infinite domain �

to a sequence of bounded domains DL = {(x, y) ∈ R2 | max{|x | , |y|} ≤ L} ⊂ �.
This leads to the problem of finding appropriate boundary conditions on the
surface �L = ∂DL \ ∂� of the truncated domain. In a recent paper (4,5) we have
introduced for the case of the flow around an obstacle of finite size a novel scheme
that uses on the boundary the vector field obtained from an asymptotic analysis
of the problem to second order. (12) Here, we use similar techniques and use on
�L Dirichlet boundary conditions obtained from the vector fields calculated in
the previous sections through our asymptotic analysis. In contrast to the work
in Refs. 4,5 the boundary B of the original domain also gets truncated in the
present case, and forms a corner of ninety degrees with the artificial boundary
�L . This fact is numerically somewhat delicate and we have therefore chosen to
use a very straightforward, unsophisticated but robust numerical implementation



156 Bichsel and Wittwer

0 200 400 600 800 1000
0

0.1

0.2

0.3

0 200 400 600 800 1000
0.34

0.35

0.36

0.37

0.38

0.39

0 200 400 600 800 1000
0

0.1

0.2

0.3

0 200 400 600 800 1000

0.28

0.3

0.32

0.34

Fig. 5. Plot of the function x �→ x1/2τ+(x) as a function of domain size L with artificial boundary
conditions obtained from first order asymmetric perturbation theory (top left) and zoom on the same
quantity (top right). Bottom: same results for the function x �→ x1/2τ−(x).

of the problem. See for example. (7,11,22) Namely, we use after truncation to a finite
domain DL a simple first order finite difference scheme on staggered lattices and
solve then the time dependent Navier-Stokes equation

∂t u = −(u · ∇)u + �u − ∇ p

by iterating a first order discretization in time with a sufficiently small time step
until convergence to a stationary solution, on each of a sequence of nested lattices
(see Ref.7). The pressure is computed at each time step with high precision in
order to keep the vector fields divergence free. This method is numerically robust,
but convergence is slow and many weeks of computer time on a PC equipped with
a Pentium 4, 2.8GHz processor were necessary to obtain the results that we discuss
now.

Let L = 125, 250, 500, 1000. Then, on each of the corresponding domains
DL , with we have solved (8)–(11) on a sequence of nested lattices using:

A the symmetric vector field u0 obtained from perturbation theory to leading
order (see (45)–(47)),
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Fig. 6. (a) Graph of the function f ′ (left), and the function f ′′ (right). (b) Graph of the function
z �→ f (z) − z − a (left), and z �→ f2,0(z) = ( f (z) − z f ′(z))/a (right).

B the symmetric vector field u0 + (∂yψ1,2,loc,−∂xψ1,2,loc) obtained from per-
turbation theory with logarithmic corrections (see (88)),

C the asymmetric vector field u1 obtained from perturbation theory to second
order (see (62)–(64)).

Some care has to be taken when discretizing these vector field in order to
ensure that numerically the total flux through the surface of the truncated do-
main is zero, since otherwise the equation for the pressure cannot be solved. In
a finite domain the boundary conditions determine the flux, and since the bound-
ary conditions A and B are mirror symmetric with respect to the x-axis the flux
above and below the plate has to be the same. It turns out that the vector field
converges in these cases to a symmetric vector field, even when starting from
asymmetric initial conditions. Similarly, the vector field C forces the flux to
be asymmetric with respect to the plate and in this case the vector field con-
verges to an asymmetric solution. Let (uL ,X , vL ,X ) be the numerical solution of
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Fig. 7. From left to right, top to bottom: graph of the function f1, j2,0, j2,1, and f2.

the problem obtained in the domain DL with Dirichlet boundary conditions X
being either of the vector fields described in A, B and C. For the symmetric
cases we have computed upon convergence to a stationary solution the func-
tion τL ,X (x) = limy→+0 ∂yuL ,X (x, y), and in the asymmetric case the functions
τ±,L ,X (x) = ± limy→±0 ∂yuL ,X (x, y). The results are summarized in Fig. 4 for the
symmetric case, and in Fig. 5 for the asymmetric case. We expect that, for a given
type of boundary conditions, the functions τL ,X and τ±,L ,X converge as a function
of L uniformly on compact sets to the corresponding limiting function. This limit
should be the same for the two symmetric boundary conditions. This is indeed
what the figures suggest. In particular the convergence to a limit appears to be
faster when one includes the term with logarithmic corrections in the symmetric
case, and the results are close to the numerical solution found previously by other
groups. (24) Taking the good convergence of the procedure in the symmetric case
(Fig. 4) as a confirmation for the validity of our method, we conclude from Fig. 5
that there is good evidence for the existence of an asymmetric stationary solution
to the problem (8)–(11).
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APPENDIX A

In this appendix we discuss in more detail the Blasius Eq. (35), recall the
computation of drag (and lift) through surface integrals and give some more details
concerning the Green’s function for the Laplacean in �.

A.1. Blasius Equation

Let f be the solution of the Blasius equation. (35). In order to find this
function numerically one usually uses the following scaling property, which is a
consequence of the scale-invariance of the domain �. Namely, define for β > 0 the
function fβ by the equation f (z) = β fβ(βz). Then fβ satisfies the same equation
as f and fβ(0) = f ′

β(0) = 0, but

lim
z→∞ f ′

β(z) = 1/β2 . (103)

Since furthermore f ′′(0) = β3 f ′′
β (0), we can first solve the Eq. (35) with the

additional boundary condition at zero f ′′
β (0) = 1, and use (103) to determine β.

The boundary condition limz→∞ f ′(z) = 1 is therefore equivalent to setting

f ′′(0) = a2 = β3 .

Numerically we find β = 0.69247 . . . and therefore a2 = 0.33205 . . . . Further-
more one finds numerically that

lim
z→∞ f (z) − z = a = −1.7207 . . . .

Note that the functions z �→ f (z) − z − a, z �→ f ′(z) − 1, z �→ f (z) − z f ′(z) and
f ′′ all decay faster than exponential at infinity. For graphs of these functions see
Fig. 6. Additional details can be found in many textbooks. See for example Ref. 2.
For convenience later on we also define the functions F1,

F1(z) =
∫ z

0
f (ζ )dζ = z2

2
+ az +

∫ z

0
( f (ζ ) − ζ − a) dζ

= z2

2
+ az + λ0 −

∫ ∞

z
( f (ζ ) − ζ − a) dζ, (104)

where λ0 = ∫ ∞
0 ( f (ζ ) − ζ − a) dζ = 2.182 . . . . The function z �→ F1(z) −

z2/2 − az − λ0 decays faster than exponential at infinity. There is also an ex-
plicit expression for F1 in terms of f . Namely, using the equation for f (see (35))
we find that

F1(z) = −2
∫ z

0

f ′′(ζ )

f ′′′(ζ )
dζ = −2 log( f ′′(z)/a2) .
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We also need the function F2,

F2(z) =
∫ z

0
F1(ζ )dζ = z3

6
+ a

z2

2
+ λ0z −

∫ z

0
dζ

∫ ∞

ζ

f0(η) dη

= z3

6
+ a

z2

2
+ λ0z + λ1 +

∫ ∞

z
dζ

∫ ∞

ζ

f0(η) dη . (105)

with λ1 = ∫ ∞
0 dζ

∫ ∞
ζ

( f (η) − η − a) dη. The function z �→ F2(z) − z3/6 −
az2/2 − λ0z − λ1 also decays faster than exponential at infinity. The functions
F1 and F2 are used in Sec. 4.2.

A.2. Computation of Drag

Let u, p be a solution of the Navier-Stokes equations. (8), (9) subject to the
boundary conditions (10), (11), and let e be some arbitrary unit vector in R2.
Multiplying (8) with e leads to

− (u · ∇) (u · e) + � (u · e) − ∇ · (pe) = 0 . (106)

Since

∇ · ((u · e) u) = u · (∇ (u · e)) + (u · e) (∇ · u) = (u · ∇) (u · e) ,

� (u · e) = ∇ · ( [∇u+ (∇u)T ] · e),

Eq. (106) can be written as ∇ · P(e) = 0, where

P(e) = − (u · e) u + [∇u+ (∇u)T ] · e − pe, (107)

i.e., the vector field P(e) is divergence free. Therefore, applying Gauss’s theorem
to the region �S = [−x, x] × [−s, s] for x , s > 0, we find (with inward normal
vectors on ∂� and outward normal vectors on S) that

∫

∂�

P(e) · n dσ =
∫

S
P(e) · n dσ . (108)

We have that P(ẽ) · e = P(e) · ẽ for any two unit vectors e and ẽ, and therefore it
follows from (108), since e is arbitrary, that

∫

∂�

P(n) dσ =
∫

S
P(n) dσ . (109)

Since u = 0 on ∂�, we finally get from (109) and (107) that the total force the
fluid exerts on the body is

F =
∫

∂�

�(u, p)n dσ =
∫

S

(− (u · n) u + [∇u+ (∇u)T ]n − pn
)

dσ, (110)
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with �(u, p) = ∇u+ (∇u)T − p the stress tensor. The force F is traditionally
decomposed into a component D parallel to the flow at infinity called drag and
a component L perpendicular to the flow at infinity called lift. We compute here
the drag only. Since lim|y|→∞ u(x, y) = (1, 0) and since p can be chosen such that
lim|y|→∞ p(x, y) = 0 for all x ∈ R, we can take the limit s → ∞ and replace S by
two vertical lines, one at −x < 0 and one at x > 0. To leading order we therefore
get that D ≈ D0, where

D0(x) =
∫

R
µ0(x, y) dy, (111)

with

µ0(x, y) = −u0(x, y)2 − p0(x, y) + u0(−x, y)2 + p0(−x, y),

with u0 as defined in (45) and p0 as defined in (54). On the scale y ∼ x1/2 we have

ν0(z) = lim
x→∞ µ0(x, zx1/2) = 1 − f ′(|z|)2,

whereas on the scale y ∼ x we get that

ν1(z) = lim
x→∞ x1/2µ0(x, zx) = a

4

r−(−1, z) − r−(1, z)

r (1, z)
, (112)

and that

ν2(z) = lim
x→∞ x

(
µ0(x, zx) − 1√

x
ν1(z)

)
= a2

4

1

r (1, z)2
. (113)

Therefore, since

−
∫ ∞

0
( f ′(z)2 − 1) dz = −[

f (z) f ′(z) − z
]z=∞

z=0
+

∫ ∞

0
f (z) f ′′(z) dz

= −a − 2
∫ ∞

0
f ′′′(z) dz = 2a2 − a, (114)

with a2 as defined in (15), we find that

D(x) ≈ D0(x) ≈ −2
√

x

∫ ∞

0
( f ′(z)2 − 1) dz

+ 2
√

x

∫ ∞

0
ν1(z) dz + 2

∫ ∞

0
ν2(z) dz

= 4a2
√

x − 2a
√

x + 2a
√

x + a2π

4
= 4a2

√
x + a2π

4
, (115)

from which, after division by x , (98) and (101) follow with C0 as defined in (99).
It is tedious but straightforward to verify that all the neglected terms are smaller
than the ones computed here.
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A.3. Green’s Function

In this section we derive the Green’s function for the Laplacean in � with
Dirichlet boundary conditions on [0,∞), i.e., a function G: � × � → R, such
that

f (x, y) =
∫

�

G(x, y; x0, y0) g(x0, y0) dx0 dy0 (116)

solves the equation � f = g in � with f (x, 0) = 0 for x ≥ 0. We use complex
notation, i.e., � = C \ [0,∞). Let H = {z ∈ C | Im(z) > 0} be the upper half
plane. The map z �→ z2 maps H conformally onto �. Let z = ξ + iη ∈ H . Then
z2 = x + iy with

x = ξ 2 − η2, (117)

y = 2ξη . (118)

The inverse of (117), (118) is ξ = y/r−(x, y), η = r−(x, y)/2, with r− as defined
in (26).

The following observation concerning the limit towards the boundary will be
useful below: Let η → 0 for fixed ξ �= 0, then x → ξ 2 > 0, and y converges to
zero from above or below depending on the sign of ξ . In other words, the limit
when y → ±0 for x > 0 corresponds to taking the limit η → 0 (from above) for
fixed ξ = ±√

x . The differential version of the change of coordinates (117), (118)
is (dx, dy) = A(dξ, dη) with

A =
(

2ξ −2η

2η 2ξ

)
.

We have that det(A) = 4(ξ 2 + η2) and the inverse infinitesimal change of coordi-
nates is therefore given by (dξ, dη) = B(dx, dy), with

B = A−1 = 1

4

1

(ξ 2 + η2)

(
2ξ 2η

−2η 2ξ

)
.

Define now, for given functions f and g the functions f̃ and g̃ by the equation
f̃ (ξ, η) = f (x, y), and g̃(ξ, η) = g(x, y), with x , y given by (117), (118). Then,
we find by direct calculation that

(� f ) (x, y) = 1

4

1

(ξ 2 + η2)
(� f̃ )(ξ, η),

and therefore we get from (116) by the change of variables x0 = ξ 2
0 − η2

0, y0 =
2ξ0η0 with inverse ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2, the identity

(� f ) (x, y) = 1

(ξ 2 + η2)

∫

H
(�G̃)(ξ, η; ξ0, η0) g̃(ξ0, η0)

(
ξ 2

0 + η2
0

)
dξ0 dη0,

(119)
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where G̃(ξ, η; ξ0, η0) = G(x, y; x0, y0). It is now easy to see that the Green’s
function G̃ of our problem is given by

G̃(ξ, η; ξ0, η0)

= 1

4π

[
log((ξ − ξ0)2 + (η − η0)2) − log((ξ − ξ0)2 + (η + η0)2)

]
. (120)

Namely, by definition of G̃ we have that (�G̃)(ξ, η; ξ0, η0) = δ(ξ − ξ0)δ(η −
η0), for (ξ, η) ∈ H , and therefore we find that � f = g in �. Furthermore
limη→+0 G̃(ξ, η; ξ0, η0) = 0, and therefore G(x,±0; x0, y0) = 0, for x > 0. This
implies that f (x, 0) = 0 for x > 0 as required. From the above it follows that
(∂2

x + ∂2
y )G(x, y; x0, y0) = δ(x − y)δ(y − y0), and similarly one can show that

(
∂2

x0
+ ∂2

y0

)
G(x, y; x0, y0) = δ(x − y)δ(y − y0) . (121)

Next, we note that

lim
y0→±0

G(x, y; x0, y0) = lim
η0→+0

G̃(ξ, η; ±√
x0, η0) = 0, (122)

and an explicit computation shows that

lim
y→±0

∂yG(x, y; x0, y0) = lim
η→0

(
∂ξ G̃(ξ, η; ξ0, η0)

∂ξ

∂y
+ ∂ηG̃(ξ, η; ξ0, η0)

∂η

∂y

)

= − 1

2π

1

ξ

η0

(ξ − ξ0)2 + η2
0

, (123)

where the right hand side has to be evaluated at ξ = sign(y)
√

x and at ξ0 =
y0/r−(x0, y0), η0 = r−(x0, y0)/2. Similarly we have that

lim
y0→−0

∂y0 G(x, y; x0, y0) + lim
y0→+0

∂y0 G(x, y; x0, y0)

= − 2

π

ξη

((ξ − ξ0)2 + η2)((ξ + ξ0)2 + η2)
, (124)

lim
y0→−0

∂y0 G(x, y; x0, y0) − lim
y0→+0

∂y0 G(x, y; x0, y0)

= 1

π

η
(
ξ 2 + η2 + ξ 2

0

)

((ξ − ξ0)2 + η2)((ξ + ξ0)2 + η2)
, (125)

where ξ0 = √
x0 and where ξ = y/r−(x, y), η = r−(x, y)/2. Finally we have that

− 2

π

∫ ∞

0

ξη

((ξ − ξ0)2 + η2)((ξ + ξ0)2 + η2)

√
x0 dx0

= − 4

π
ξη

∫ ∞

0

ξ 2
0

((ξ − ξ0)2 + η2)((ξ + ξ0)2 + η2)
dξ0 = −ξ, (126)
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and similarly that

1

π

∫ ∞

0

η
(
ξ 2 + η2 + ξ 2

0

)

((ξ − ξ0)2 + η2)((ξ + ξ0)2 + η2)
dx0 = 1 . (127)

APPENDIX B

This appendix contains the details concerning the asymptotic expansion.

B.I. Proof of Proposition 3

Let ψ0,loc and ω0 be as defined in (44) and (43). For (x, y) ∈ � we have

�ψ0,loc(x, y) = −ω0(x, y) + θ (x)sign(y)∂2
x

(√
x

(
f

( |y|√
x

)
− |y|√

x
− a

))
.

(128)
Furthermore

∂2
x

(√
x

(
f

( |y|√
x

)
− |y|√

x
− a

))
= 1

x3/2
f̃ ′′
0

( |y|√
x

)
, (129)

where

f̃ ′′
0 (z) = 1

4
(z2 f ′′(z) − ( f (z) − z f ′(z) − a)) . (130)

Equation (130) can be integrated explicitly to yield f̃0 and ω̃0 as given in (74) and
(75). Note that limz→∞ f̃ ′

0(z) = f̃ ′
0(0) = 0. From (128) and (129) we find for the

solution ψ0 of �ψ0 = −ω0 the representation

ψ0 = ψ0,loc + ψ0,nonloc (131)
with

ψ0,nonloc(x, y) =
∫

�

G(x, y; x0, y0) ω̃0(x, y) dx0dy0. (132)

Explicitly we get from (132) with (75) after a change of variables

ψ0,nonloc(x, y) =
∫

�

G(x, y; x0,
√

x0z)
sign(z)

x0
f̃ ′′
0 (|z|) dx0dz, (133)

and the integral in (133) is well defined since f̃ ′′
0 decays rapidly at infinity and

G(x, y; x0,
√

x0z) ≈
⎧
⎨

⎩

x1/4
0 x0 → 0, for arbitrary but fixed x , y, z ∈ R

1/x0 x0 → ∞, for arbitrary but fixed x , y, z ∈ R
(134)

Note that the vector field (∂yψ0,loc,−∂xψ0,loc) satisfies the boundary conditions
(10) and (11). Therefore it is sufficient to prove that limy→±0 ∂yψ0,nonloc(x, y) = 0
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for x > 0 to prove Proposition 3. Using (123) we find that

lim
y→±0

∂yψ0,nonloc(x, y) =
∫

�

lim
y→±0

∂yG(x, y; x0, y0) ω̃0(x0, y0) dx0dy0

= − 1

2π

1

ξ

∫ ∞

0
dx0

∫

R
dy0

η0

(ξ − ξ0)2 + η2
0

ω̃0(x0, y0), (135)

where ξ = sign(y)
√

x and where ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2. Next,
using the definition (75) of ω̃0 we get,

lim
y→±0

∂yψ0,nonloc(x, y)

= − 1

2π

1

ξ

∫ ∞

0
dx0

∫ 0

−∞
dy0

η0

(ξ − ξ0)2 + η2
0

1

x3/2
0

f̃ ′′
0

(−y0√
x0

)

+ 1

2π

1

ξ

∫ ∞

0
dx0

∫ ∞

0
dy0

η0

(ξ − ξ0)2 + η2
0

1

x3/2
0

f̃ ′′
0

(
y0√
x0

)
= − 1

2π

1

ξ
·

·
∫ ∞

0
dx0

∫ ∞

0
dy0

(
η0

(ξ − ξ0)2 + η2
0

− η0

(ξ + ξ0)2 + η2
0

)
1

x3/2
0

f̃ ′′
0

(
y0√
x0

)

= − 2

π

∫ ∞

0
dx0

∫ ∞

0
dy0

ξ0η0(
(ξ − ξ0)2 + η2

0

) (
(ξ + ξ0)2 + η2

0

)
1

x3/2
0

f̃ ′′
0

(
y0√
x0

)
.

(136)

We change coordinates by setting y0 = √
x0z. We get

lim
y→±0

∂yψ0,nonloc(x, y)

= − 2

π

∫ ∞

0
dx0

∫ ∞

0
dz

ξ̃0η̃0(
(ξ − ξ̃0)2 + η̃2

0

)(
(ξ + ξ̃0)2 + η̃2

0

)
1

x0
f̃ ′′
0 (z), (137)

where ξ̃0 = z
√

x0/r−(x0, z
√

x0), η̃0 = r−(x0, z
√

x0)/2. Next we exchange the in-
tegrals and then change coordinates by setting x0 = z2s. We get

lim
y→±0

∂yψ0,nonloc(x, y) = − 2

π

∫ ∞

0
dz

1

z2
f̃ ′′
0 (z)

∫ ∞

0

ds

s

×
˜̃η0

˜̃ξ 0
(
(ξ/z − ˜̃ξ 0)2 + ˜̃η2

0

)(
(ξ/z + ˜̃ξ 0)2 + ˜̃η2

0

) , (138)

where ˜̃ξ 0 = √
s/r−(s,

√
s), ˜̃η0 = r−(s,

√
s)/2. The integral over s can be com-

puted explicitly and is equal to (π/2)(z/ξ )2, and therefore since limz→∞ f̃ ′
0(z) =

f̃ ′
0(0) = 0 we find that limy→±0 ∂yψ0,nonloc(x, y) = 0 for x > 0 as required. Finally,

since limy→±0 ∂yr−(x, y) �= 0 for x > 0, (132) is the only solution such that
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ψ0 = ψ0,loc + ψ0,nonloc satisfies the boundary conditions (10) and (11), and there-
fore ω0 is admissible in the sense of Definition 2.1. This completes the proof of
Proposition 3.

B.2. Proof of Proposition 4

Let ψ1 be as defined in (32) with α = −b/2, i.e.,

ψ1(x, y) = −b

2
r−(x, y) −

∫

�

G(x, y; x0, y0) ω1(x0, y0) dx0dy0, (139)

with r− as defined in (26). Using the definition of (59) and (134) it is easy to see
by changing variables as in (133) that the integral in (139) is well defined. We now
check that ω0 + ω1 is admissible. First we show that limy→±0 ∂yψ1(x, y) = 0 for
x ≥ 0. Using (123) we find that

lim
y→±0

∂yψ1(x, y) = −b

2
lim

y→±0
∂yr−(x, y)

−
∫

�

lim
y→±0

∂yG(x, y; x0, y0) ω1(x0, y0) dx0dy0

= − b

2ξ
+ 1

2π

1

ξ

∫

�

η0

(ξ − ξ0)2 + η2
0

ω1(x0, y0) dx0dy0,

(140)

where ξ = sign(y)
√

x and where ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2. Next,
using the definition (59) of ω1 we get

lim
y→±0

∂yψ1(x, y) = − b

2ξ
− b

4π

1

ξ
·

·
∫ ∞

0
dx0

∫ ∞

0
dy0

(
η0

(ξ − ξ0)2 + η2
0

+ η0

(ξ + ξ0)2 + η2
0

)
1

x0
f ′′
1

(
y0√
x0

)

= − b

2ξ
− b

2π

1

ξ
·

·
∫ ∞

0
dx0

∫ ∞

0
dy0

(
ξ 2 + ξ 2

0 + η2
0

)
η0(

(ξ − ξ0)2 + η2
0

) (
(ξ + ξ0)2 + η2

0

)
1

x0
f ′′
1

(
y0√
x0

)
.

(141)

We change coordinates by setting y0 = √
x0z. We get

lim
y→±0

∂yψ1(x, y) = − b

2ξ
− b

2π

1

ξ

∫ ∞

0
dx0

∫ ∞

0
dz

×
(
ξ 2 + ξ̃ 2

0 + η̃2
0

)
η̃0(

(ξ − ξ̃0)2 + η̃2
0

)(
(ξ + ξ̃0)2 + η̃2

0

)
1√
x0

f ′′
1 (z), (142)
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where ξ̃0 = z
√

x0/r−(x0, z
√

x0), η̃0 = r−(x0, z
√

x0)/2. Next we exchange the in-
tegrals and then change coordinates by setting x0 = z2s. We get

lim
y→±0

∂yψ1(x, y) = − b

2ξ
− b

2π

1

ξ

∫ ∞

0
dz f ′′

1 (z)
∫ ∞

0

ds√
s

×
(
(ξ/z)2 + ˜̃ξ

2

0 + ˜̃η2
0

)
˜̃η0

(
(ξ/z − ˜̃ξ 0)2 + ˜̃η2

0

)(
(ξ/z + ˜̃ξ 0)2 + ˜̃η2

0

) , (143)

where ˜̃ξ 0 = √
s/r−(s,

√
s), ˜̃η0 = r−(s,

√
s)/2. The integral over s can be com-

puted explicitly and is equal to π , independent of ξ and therefore, since
limz→∞ f ′

1(z) = 0 and f ′
1(0) = 1, we find that for x > 0

lim
y→±0

∂yψ1(x, y) = − b

2ξ
− b

2ξ

∫ ∞

0
dz f ′′

1 (z) = 0,

as required. Finally, since limy→±0 ∂yr−(x, y) �= 0 for x > 0, (139) is the only
solution such that ψ0 + ψ1 satisfies all the boundary conditions, and therefore
ω0 + ω1 is admissible in the sense of Definition 2.1. This completes the proof of
Proposition 4.

Finally we show that ψ1,loc as defined in (61) approximates ψ1 to leading
order. Let χ ∈ C∞(R) be a non-decreasing function with χ (x) = 0 for x ≤ 1/2
and χ (x) = 1 for x ≥ 1 and let

ψ>
1,loc(x, y) = −b

2

√
2
√

x2 + y2 − 2x + b

2
c1 + b

2
χ (x)

(
f1

( |y|√
x

)
− c1

)
.

(144)
For (x, y) ∈ � we have

�ψ>
1,loc(x, y) = b

2
χ (x)

1

x
f ′′
1

( |y|√
x

)
+ ∂2

x

(
b

2
χ (x)

(
f1

( |y|√
x

)
− c1

))
. (145)

Set ψ1 = ψ>
1,loc + ψ>

1,nonloc. Then, since �ψ1 = −ω1 we find with (59) and (145)
that

�ψ>
1,nonloc(x, y) = b

2
(θ (x) − χ (x))

1

x
f ′′
1

( |y|
x

)

− ∂2
x

(
b

2
χ (x)

(
f1

( |y|√
x

)
− c1

))
. (146)

Therefore we have that ψ1,nonloc = ψ1 − ψ1,loc = (ψ>
1,loc − ψ1,loc) + ψ>

1,nonloc, i.e.,

ψ1,nonloc(x, y) = b

2
(χ (x) − θ (x))

(
f1

( |y|√
x

)
− c1

)

+
∫

�

G(x, y; x0, y0) �ψ>
1,nonloc(x0, y0) dx0dy0 . (147)
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A careful analysis shows that

lim
x,y→∞ r3/2∂xψ1,nonloc(x, y) = lim

x,y→∞ r3/2∂yψ1,nonloc(x, y) = 0,

and therefore ψ1,nonloc does not contribute to the limits (65) and (80).

B.3. Proof of Proposition 5

By definition ω2 = ω̃0 + ω̃2, with ω̃0 = �ψ0,nonloc, see (132). Therefore,
ψ2 = −ψ0,nonloc + ψ̃2, where

ψ̃2(x, y) = −
∫

�

G(x, y; x0, y0) ω̃2(x0, y0) dx0dy0. (148)

As above it is easy to check using (134) and a change of variables that the
integral in (148) is well defined. Since ψ0 and ψ0,loc both satisfy all the boundary
conditions, it follows that ω0 + ω1 + ω̃0 is admissible, and it therefore suffices
to show that limy→±0 ∂yψ̃2(x, y) = 0 for x ≥ 0 in order to prove that

∑2
n=0 ωn is

admissible. Proceeding exactly as in (135)–(138), replacing each instance of f̃0

by − f̃2, we find that limy→±0 ∂yψ̃2(x, y) = 0 for x > 0 as required. Finally, since
limy→±0 ∂yr−(x, y) �= 0 for x > 0, (148) is the only solution such that

∑2
n=0 ψn

satisfies all the boundary conditions, and therefore
∑2

n=0 ωn is admissible in the
sense of Definition 2.1. This completes the proof of Proposition 5.

Finally, to show that ψ̃2,loc as defined in (76) approximates ψ̃2 to leading
order we proceed as in Sec. B.2. Let

ψ̃>
2,loc(x, y) = c̃2

y

r (x, y) r−(x, y)
+ χ (x) sign(y)

1√
x

(
f̃2

( |y|√
x

)
− c̃2

)
. (149)

For (x, y) ∈ � we have

�ψ̃>
2,loc(x, y) = χ (x) sign(y)

1

x3/2
f̃ ′′
2

( |y|√
x

)

+ ∂2
x (χ (x) sign(y)

1√
x

(
f̃2

( |y|√
x

)
− c̃2

))
. (150)

Set ψ̃2 = ψ̃>
2,loc + ψ̃>

2,nonloc. Then, since �ψ̃2 = −ω̃2 we find with (75) and (149)
that

�ψ̃>
2,nonloc(x, y) = (θ (x) − χ (x)) sign(y)

1

x3/2
f̃ ′′
2

( |y|√
x

)

− ∂2
x

(
χ (x) sign(y)

1√
x

(
f̃2

( |y|√
x

)
− c̃2

))
. (151)
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Therefore we have that ψ̃2,nonloc = ψ̃2 − ψ̃2,loc = (ψ̃>
2,loc − ψ̃2,loc) + ψ̃>

2,nonloc, i.e.,

ψ̃2,nonloc(x, y) = (θ (x) − χ (x)) sign(y)
1√
x

(
f̃2

( |y|√
x

)
− c̃2

)

+
∫

�

G(x, y; x0, y0) �ψ̃>
2,nonloc(x0, y0) dx0dy0 .

A careful analysis shows that

lim
x,y→∞ r3/2∂x ψ̃2,nonloc(x, y) = lim

x,y→∞ r3/2∂yψ̃2,nonloc(x, y) = 0,

and therefore ψ2,nonloc does not contribute to the limits (65) and (80). Finally,
using the same techniques and assuming that ω is of the form (19) with ω̃ ∈ W
one shows the bounds (34).
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